

GRC Conference - San Diego, CA

Construction and Startup of Low Temperature Geothermal Power Plants

Phil Welch, Patrick Boyle, Marc Sells, and Michelle Giron Energent Corporation October 26th, 2011

Two-Phase Turbine – Variable Phase Turbine (VPT)

TWO-PHASE JET FROM NOZZLE

Two-Phase Turbine - Variable Phase Turbine

Variable Phase Turbine Benefits

Can expand fluids into the two-phase region

Low speed eliminates gear box and lube oil

Hermetic turbine-generator available

Low runaway and thrust load

Zero erosion due to low jet velocities

Hermetic 150 kW Variable Phase Turbine

Variable Phase Cycle (VPC)

Variable Phase Cycle (VPC)

SYSTEM SPECIFICATIONS

Ged	oth	erma	l Bri	ine
	<i>-</i>	CITTA		

Variable Phase Cycle Power System

Flow	847,000 lb/hr		
Temperature	234 °F (inlet)		
Temperature	175 °F (outlet)		
Working Fluid	R134a		
Cycle Type	Liquid – Variable Phase cycle		
Turbine Type	Two-Phase Axial		
Turbine Speed	3,600 rpm		
Net Power	1000 kW		

- A 1 MW VPC is currently being installed at the Coso Geothermal Field in California
- Energy is extracted from the warm brine reinjection line, which would be otherwise wasted
- World's largest trilateral flash cycle

Coso Geothermal Site – China Lake

Coso Geothermal System Layout

Turbine-Generator-Pump Assembly

- Turbine, generator, and pump are coupled along a single shaft
- Assembly rotates at 3,600 rpm (synchronous) with no gear reductions
- Entire assembly is mounted on a single skid

Heat Exchanger

- 40' shell and tube type heat exchanger
- Fluid does not boil in the VPC → liquid-to-liquid heat exchanger
- 352 tubes per shell

Condenser

- Plate and frame type condenser
- Uses water from existing cooling towers
- 330 semi-welded plate cassettes

Radial Outflow Turbine – Euler Turbine

Radial Outflow Turbine – Euler Turbine

Microsteam Turbine — 275 kW Euler Turbine

Euler Turbine Benefits

High Efficiency

Single Stage Gearbox

Titanium Alloy Construction

Erosion and Corrosion Resistant

Rugged 2D Blade Design

Moisture Resistant – Expand Saturated Vapor

Kalina Cycle for Low Temperature Geothermal

Euler Turbine – 575 kW Kalina Cycle

Taiwan Kalina Cycle in Chingshui, Taiwan

- Competition to determine best geothermal technology for this resource
- Taiwan's first Kalina cycle featured a modified Microsteam Turbine

Japan – Low Temperature Geothermal Potential

Total 723 MW from existing hot springs Temperature <120 deg.C

Total potential of all resources 8,330MW (Temperature <120 deg. C)

Muraoka (2007)

Muraoka (2008)

Nanosteam Turbine - 100 kW Euler Turbine

The Nanosteam Turbine is based on the Euler Turbine technology and utilizes a highspeed generator and power electronics in place of a traditional gear box.

Nanosteam Turbine Installations and Testing

Nanosteam Turbines have been delivered for Kalina cycles in Japan and China. Both units were extensively tested at Energent's factory and a full scale Kalina cycle laboratory in Shanghai.

Nanosteam Turbine Performance Results

Nanosteam Performance

Discussion

Construction and Startup of Low Temperature Geothermal Power Plants

More information at: www.energent.net

